本文作者:尚泽华
四川大学生物治疗全国重点实验室贾大课题组
应激颗粒(SGs)是真核细胞在应对缺氧、热休克、病毒感染和氧化应激等各种应激时形成的无膜 RNA 颗粒1。SGs 的形成会导致细胞新陈代谢的重新规划、翻译的抑制以及正常细胞信号的改变,从而帮助细胞存活。SG 是通过一种称为液-液相分离(LLPS)的物理过程形成的,其中包含许多蛋白质,包括小核糖体亚基、翻译起始因子、翻译受阻的 mRNA 和 RNA 结合蛋白2。最近发现了一个由 36 个 SG 蛋白组成的核心 SG 网络,其中 G3BP1/2 是中心节点3。这些蛋白对调节 SG 的组装和功能至关重要。在许多病理情况下,如病毒感染4-8、神经退行性疾病9-11和癌症12、13等,SG的组装和分解失调都会发生,这突出了SG在人类疾病中的重要性。最近的研究发现,不同类型的应激会诱导不同的 SG 亚型,这些亚型在组成、组装和解体的动态以及细胞功能方面各不相同14。例如,亚砷酸钠或热休克处理会诱导形成典型的 SG,这种 SG 更具有活力,能起到促进生存的作用15。与此相反,亚硒酸钠等化疗药物或紫外线照射会导致非典型 SG 的形成,这种 SG 的动态性较弱,对细胞有促进凋亡的作用15、16。尽管应激特异性 SG 亚型的概念正在形成7、15、17-19,但它们不同的蛋白质和 RNA 组成及功能在很大程度上仍未得到探索。
2024年5月15日,四川大学生物治疗全国重点实验室贾大课题组与合作者在Nature communications杂志( IF=16.6 (2023) / JCR分区: Q1 )在线发表了题为“TRIM25 predominately associates with anti-viral stress granules“ 的研究论文。该工作利用 G3BP1 邻近蛋白生物素化标记实验发现 TRIM25 是抗病毒 SG 的有效标记物。课题组成员发现 TRIM25 会独立发生 LLPS 现象,而 dsRNA 的存在会显著增强这种反应。Poly(I:C)处理和RNA病毒感染都会引发TRIM25和G3BP1的共相分离,从而显著提高TRIM25对底物的泛素化活性,其中许多底物都定位于SGs中。TRIM25和G3BP1的共相分离对激活RIG-I信号通路和限制RNA病毒感染至关重要。该研究不仅为抗病毒信号通路的调控提供了新的见解,而且为研究应激特异性 SG 亚型的组成、动态和功能建立了一个研究范式。
该研究首先采用了一种邻近生物素化标记(BioID)方法(图1)来鉴定poly(I:C)刺激下的 G3BP1 相互作用网络。在 937 个差异蛋白中,有 181 个属于以前鉴定的 SG 蛋白成分,包括许多 SG 核心蛋白,如 HDAC6 和 DDX3X。有趣的是,TRIM25在所有蛋白中增加最为显著,它是一个泛素化依赖性抗病毒先天免疫反应的驱动蛋白,经 poly(I:C) 处理后富集了 130 倍(图1)。这意味着,poly(I:C) 处理会刺激 TRIM25 被招募到 SG(即抗病毒 SG)中。
(A) G3BP1 BioID 方法与基于 TMT 的定量蛋白质组学相结合的示意图。(B) 如(A)中所确定的,由 poly(I:C) 处理诱导的 SGs 核心蛋白列表。
(A) 具有代表性的荧光显微镜图像显示了在各种应激条件下 TRIM25 与 HeLa 细胞中内源性 G3BP1 的共定位。(B) TRIM25 和 G3BP1 病灶之间的最短距离。在 HeLa 细胞中,各种应激类型如(A)所示。在所有应激类型中,Sev 感染和 poly(I:C) 处理导致的距离最短。
(A) 转染 poly(I:C) 后 G3BP1(绿色)和 TRIM25 WT 或 ∆PTFG (红色)点状颗粒形成的延时显微照片,以及转染后 6 小时或 10 小时斑点的放大图像。比例尺:10 µm。插图:白色框内区域的放大图。(B) TRIM25 的 PTFG 基序是与 HeLa 细胞中的 G3BP1 共定位所必需的。细胞转染了 GFP-TRIM25 ∆PTFG 而不是 TRIM25 WT。比例尺:10 μm。
(A-D) 用 TRIM25 WT、TRIM25 PTFGAAAA或∆PTFG转染HEK293T细胞,然后用poly(I:C) 处理 12 小时。用qPCR测定IFNα (A)、IFNβ (B)、IFNγ (C)和ISG56 (D)的 mRNA 水平。
参考文献
1. Anderson, P. & Kedersha, N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10, 430-436 (2009).
2. Guillen-Boixet, J. et al. RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation. Cell 181, 346-361 e317 (2020).
3. Yang, P. et al. G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules. Cell 181, 325-345 e328 (2020).
4. Eiermann, N., Haneke, K., Sun, Z., Stoecklin, G. & Ruggieri, A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 12 (2020).
5. McCormick, C. & Khaperskyy, D.A. Translation inhibition and stress granules in the antiviral immune response. Nat Rev Immunol 17, 647-660 (2017).
6. Poblete-Duran, N., Prades-Perez, Y., Vera-Otarola, J., Soto-Rifo, R. & Valiente-Echeverria, F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 8 (2016).
7. Guan, Y. et al. Multiple functions of stress granules in viral infection at a glance. Front Microbiol 14, 1138864 (2023).
8. Manjunath, L. et al. APOBEC3B drives PKR-mediated translation shutdown and protects stress granules in response to viral infection. Nat Commun 14, 820 (2023).
9. Wolozin, B. & Ivanov, P. Stress granules and neurodegeneration. Nat Rev Neurosci 20, 649-666 (2019).
10. Marmor-Kollet, H. et al. Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Mol Cell 80, 876-891 e876 (2020).
11. Markmiller, S. et al. Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules. Cell 172, 590-604 e513 (2018).
12. Asadi, M.R. et al. Stress Granules Involved in Formation, Progression and Metastasis of Cancer: A Scoping Review. Front Cell Dev Biol 9, 745394 (2021).
13. Lee, J.I. & Namkoong, S. Stress granules dynamics: benefits in cancer. BMB Rep 55, 577-586 (2022).
14. Advani, V.M. & Ivanov, P. Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci 77, 4827-4845 (2020).
15. Aulas, A. et al. Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 130, 927-937 (2017).
16. Reineke, L.C. & Neilson, J.R. Differences between acute and chronic stress granules, and how these differences may impact function in human disease. Biochem Pharmacol 162, 123-131 (2019).
17. Zeng, W.J. et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res 1867, 118795 (2020).
18. Liu, Y. et al. Hypoxia-Induced FUS-circTBC1D14 Stress Granules Promote Autophagy in TNBC. Adv Sci (Weinh) 10, e2204988 (2023).
19. Cabral, A.J., Costello, D.C. & Farny, N.G. The enigma of ultraviolet radiation stress granules: Research challenges and new perspectives. Front Mol Biosci 9, 1066650 (2022).